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Introduction

The Hopf fibration, named after Heinz Hopf who studied it in a 1931 paper [8], is

an important object in mathematics and physics. It was a landmark discovery in

topology and is a fundamental object in the theory of Lie groups. The Hopf fibration

has a wide variety of physical applications including magnetic monopoles [13], rigid

body mechanics [10] and quantum information theory [12].

Unfortunately, the Hopf fibration is little known in the undergraduate curricu-

lum, in part because presentations usually assume background in abstract algebra

or manifolds. However, this is not a necessary restriction. We present in this article

an introduction to the Hopf fibration that requires only linear algebra and analytic

geometry. In particular, no vector calculus, abstract algebra or topology is needed.

Our approach uses the algebra of quaternions and illustrates some of the algebraic

and geometric properties of the Hopf fibration. We explain the intimate connec-

tion of the Hopf fibration with rotations of 3-space that is the basis for its natural

applications to physics.

We deliberately leave some of the development as exercises, called “Investiga-

tions,” for the reader. The Investigations contain key ideas and are meant to be fun

to think about. The reader may also take them as statements of facts that we wish

to assume without interrupting the narrative.

Hopf’s mapping

The standard unit n-sphere Sn is the set of points (x0, x1, . . . , xn) in R
n+1 that

satisfy the equation

x2
0 + x2

1 + · · · + x2
n = 1.
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Geometrically stated, Sn is the set of points in R
n+1 whose distance from the origin

is 1. Thus the 1-sphere S1 is the familiar unit circle in the plane, and the 2-sphere

S2 is the surface of the solid unit ball in 3-space. The thoughtful reader may wonder

what higher dimensional spheres look like. We address this issue at the end of this

article, where we explain how stereographic projection is used to “see” inside S 3.

The Hopf fibration is the mapping h:S3 → S2 defined by

h(a, b, c, d) = (a2 + b2 − c2 − d2, 2(ad + bc), 2(bd − ac)). (1)

To be historically precise, Hopf’s original formula differs from that given here by

a reordering of coordinates. We use this altered version to be consistent with the

quaternion approach explained later in this article. It is easy to check that the

squares of the three coordinates on the right hand side sum to (a2+b2+c2+d2)2 = 1,

so that the image of h is indeed contained in S2.

What problem was Hopf trying to solve when he invented this map? And how

can one see any connection with physical rotations, as we have claimed?

The work in Hopf’s paper [8] was an early achievement in the modern subject of

homotopy theory. In loose terms, homotopy seeks to understand those properties of

a space that are not altered by continuous deformations. One way to detect these

properties in an unknown space X is to compare X with a well understood space

Y via the set of all continuous maps Y → X. Two maps whose images can be

continuously deformed from one to the other are considered equivalent. Knowing

something about Y and also about the set of homotopically equivalent maps from Y

to X helps us understand X. This seemingly indirect method provides a powerful

way to analyze spaces.

Ironically, one of the most intractable problems in homotopy theory is to deter-

mine the homotopy equivalence classes of maps Y → X when X and Y are both

spheres and the dimension of X is smaller than the dimension of Y . Many individ-

ual cases for particular pairs of dimensions of X and Y are understood, but there

remain interesting unsolved problems. Hopf’s map h:S3 → S2 was a spectacular

breakthrough in this area. We cannot give the full story of this discovery here, but

we can explain the Hopf fibration in a geometric way that indicates its connection

to rotations.
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Rotations and quaternions

First, notice that a rotation about the origin in R
3 can be specified by giving a

vector for the axis of rotation and an angle of rotation about the axis. We make

the convention that the rotation will be counterclockwise for positive angles, and

clockwise for negative angles, when viewed from the tip of the vector (see Figure 1).

v

θ

Figure 1: A rotation in R
3 is specified by an angle θ and a vector v giving the axis.

The specification of a rotation by an axis vector and an angle is far from unique.

The rotation determined by the vector v and the angle θ is the same as the rotation

determined by the pair (kv, θ + 2nπ), where k is any positive scalar and n is any

integer. The pair (−v,−θ) also determines the same rotation. Nonetheless, we see

that four real numbers are sufficient to specify a rotation: three coordinates for

a vector and one real number to give the angle. This is far fewer than the nine

entries of a 3 × 3 orthogonal matrix we learn to use in linear algebra. In fact, we

can cut the number of parameters needed to specify a rotation from four to three,

for example, by giving an axis vector whose length determines the angle of rotation.

However, we shall not pursue that here; it is the 4-tuple approach that turns out to

be practical. Is there an efficient way to work with 4-tuples of real numbers to do

practical calculations with rotations? Here is a sample basic question.

Investigation (A). Given geometric data (axes and angles) for two rota-

tions, how do you determine the axis and angle for their composition? (The

composition of two rotations is the motion obtained by performing first one

rotation, then the other. Order counts!) Suggestion: think about this in-

vestigation long enough to realize that it is difficult, or at least tedious, if

you restrict yourself to matrix methods; then revisit after you do Investiga-

tion (E) below.

The problem of finding a convenient algebraic method for computing with rota-

tions led William Rowan Hamilton to invent the quaternions in the mid-19th century.
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The discovery of quaternions, and Hamilton’s life in general, is a fascinating bit of

history. For further reading, see references [6] and [14]. For an exposition of the

rotation problem in Investigation (A) and its solution, beyond what appears in this

section, see [9], § 6.2 ff.

Hamilton was inspired by the solution to the analogous problem in two dimen-

sions: rotations of the plane about the origin can be encoded by unit length complex

numbers. The angle of a rotation is the same as the angle made by its corresponding

complex number, thought of as a vector in R
2, with the positive real axis. The com-

position of rotations corresponds to the multiplication of the corresponding complex

numbers. Hamilton tried for years to make an algebra of rotations in R
3 using or-

dered triples of real numbers. One day he realized he could achieve his goal using

4-tuples. Here is his invention.

As a set (and as a vector space) the set of quaternions is identical to R
4. The

three distinguished coordinate vectors (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1) are given

the names i, j and k, respectively. The vector (a, b, c, d) is written a+ bi+ cj + dk

when thought of as a quaternion. The number a is referred to as the real part and b,

c and d are called the i, j and k parts, respectively. Like real and complex numbers,

quaternions can be multiplied. The multiplication rules are encapsulated by the

following relations.

i2 = j2 = k2 = −1

ij = k jk = i ki = j

The elements i, j and k do not commute. Reversing the left-right order changes the

sign of the product.

ji = −k kj = −i ik = −j

Here is a sample multiplication.

(3 + 2j)(1 − 4i+ k) = 3 − 12i+ 3k + 2j − 8ji + 2jk (distributing)

= 3 − 10i+ 2j + 11k (applying relations and combining terms)

Similar to the complex numbers, the conjugate of a quaternion r = a + bi + cj +

dk, denoted r, is defined to be r = a − bi − cj − dk. The length or norm of

a quaternion r, denoted ||r||, is its length as a vector in R
4. (The term norm,

when applied to quaternions, is also commonly used to refer to the square of the

Euclidean norm defined here.) The formula for the norm of r = a+ bi+ cj + dk is

||r|| =
√
a2 + b2 + c2 + d2.



Lyons 5

Investigation (B). What algebraic properties do the quaternions share

with the real or complex numbers? How are they different? Show that

quaternion multiplication is associative but noncommutative. Associativity

means that

p(qr) = (pq)r

for all quaternions p, q and r. Another formula for the norm of r = a +

bi + cj + dk is ||r|| =
√
rr. Norm has the property ||rs|| = ||r|| ||s|| for all

quaternions r and s. Because of this, multiplying two unit length quaternions

yields another unit length quaternion. The set of unit length quaternions,

viewed as points in R
4, is the 3-sphere S3. Each nonzero quaternion r has a

multiplicative inverse, denoted r−1, given by

r−1 =
r

||r||2 .

When r is a unit quaternion, r−1 is the same as r. (For these and other

details about quaternion algebra, see [9] Ch. 5.)

Here is how a quaternion r determines a linear mapping Rr: R
3 → R

3. To a

point p = (x, y, z) in 3-space, we associate a quaternion xi+ yj + zk which we will

also call p (a quaternion whose real part is zero is called pure). The quaternion

product rpr−1 is also pure, that is, of the form x′i + y′j + z′k, and hence can be

thought of as a point (x′, y′, z′) in 3-space. We define the mapping Rr by

Rr(x, y, z) = (x′, y′, z′). (2)

(x′, y′, z′)

Rr

(x, y, z)

Figure 2: A nonzero quaternion r gives rise to a rotation Rr in R
3.

Investigation (C). Is the mapping Rr described in the previous paragraph

indeed a linear map? Verify that this is the case. Moreover, show that the

map determined by any nonzero real scalar multiple of r is equal to Rr, that

is, show that Rkr = Rr for any quaternion r and any nonzero real number

k. Show that when r 6= 0, Rr is invertible with inverse (Rr)
−1 = R(r−1).
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From the “moreover” statement in the previous Investigation, whenever r 6= 0,

we are free to choose r to have norm 1 when working with the map Rr, and we shall

do so since this makes the analysis simpler.

For r 6= 0, it turns out that Rr is a rotation of R
3. The axis and angle of the

rotation Rr are elegantly encoded in the four coordinates (a, b, c, d) in the following

way, when r is a unit quaternion. If r = ±1, it is easy to see that Rr is the identity

mapping on R
3. Otherwise, Rr is a rotation about the axis determined by the

vector (b, c, d), with angle of rotation θ = 2 cos−1(a) = 2 sin−1(
√
b2 + c2 + d2). To

appreciate how nice this is, have a friend write down a 3× 3 orthogonal matrix, say,

with no zero entries; now quickly find the axis and angle of rotation!

The facts stated in the preceding paragraph are not supposed to be obvious.

Here is a sequence of exercises that outline the proof. For a detailed discussion

see [9] § 5.15.

Investigation (D). How does a unit quaternion encode geometric informa-

tion about its corresponding rotation? Let r = a + bi + cj + dk be a unit

quaternion. Verify that if r = ±1, then Rr defined above is the identity

mapping. Otherwise, show that Rr is the rotation about the axis vector

(b, c, d) by the angle θ = 2 cos−1(a) = 2 sin−1(
√
b2 + c2 + d2), as follows.

1. Show that Rr preserves norm, i.e., that ||Rr(p)|| = ||p|| for any pure

quaternion p = xi+yj+ zk. (This follows from the fact that the norm

of a quaternion product equals the product of the norms.)

2. Show that the linear map Rr has eigenvector (b, c, d) with eigenvalue

1.

3. Here is a strategy to compute the angle of rotation. Choose a vector

w perpendicular to the eigenvector (b, c, d). This can be broken down

into two cases: if at least one of b, c is nonzero, we may use w =

ci − bj. If b = c = 0, we may use w = i. Now compute the angle of

rotation by finding the angle between the vectors w and Rrw using the

following formula from analytic geometry, where the multiplication in

the numerator on the right hand side is the dot product in R
3.

cos θ =
w · Rrw

||w||2

In all cases the right hand side equals a2 − b2 − c2 −d2 = 2a2 − 1. Now

apply a half-angle identity to get a = cos(θ/2).
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Here is the fact that illustrates how Hamilton accomplished his goal to make an

algebra of rotations.

Investigation (E). Let r and s be unit quaternions. Verify that

Rr ◦Rs = Rrs.

In words, the composition of rotations can be accomplished by the multipli-

cation of quaternions. Now go back and try Investigation (A).

The next Investigation is appropriate for a student who has some experience with

groups, or could be a motivating problem for an independent study in the basics of

group theory. (For an excellent introduction to group theory with a geometric point

of view, see [2].)

Investigation (F). The set S3 with the operation of quaternion multi-

plication satisfies the axioms of a group. The set of rotations in 3-space,

with the operation of composition, is also a group, called SO(3). The map

ϕ:S3 → SO(3) given by r 7→ Rr is a group homomorphism. Each rotation

R in SO(3) can be written in the form R = Rr for some r ∈ S3 (i.e., the

map ϕ is surjective), and each rotation Rr has precisely two preimages in

S3, namely r and −r. The kernel of ϕ is the subgroup {1,−1}, and we have

an isomorphism of groups

S3/{1,−1} ≈ SO(3).

The 3-sphere, Rotations, and the Hopf Fibration

We now give a reformulation of the Hopf map in terms of quaternions. First, fix

a distinguished point, say, P0 = (1, 0, 0), on S2. Given a point (a, b, c, d) on S3,

let r = a + bi + cj + dk be the corresponding unit quaternion. The quaternion r

then defines a rotation Rr of 3-space given by (2) above. Then the Hopf fibration

is defined by

r 7→ Rr(P0) = rir. (3)

Investigation (G). Verify that the two formulas (1) and (3) for the Hopf

fibration are equivalent.
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P

Rr

(1, 0, 0)

Figure 3: The unit quaternion r moves (1, 0, 0) to P via Rr. The Hopf map takes r to P .

Consider the point (1, 0, 0) in S2. One can easily check that the set of points

C = {(cos t, sin t, 0, 0) | t ∈ R}

in S3 all map to (1, 0, 0) via the Hopf map h. In fact, this set C is the entire set of

points that map to (1, 0, 0) via h. In other words, C is the preimage set h−1((1, 0, 0)).

You may recognize that C is the unit circle in a plane in R
4. As we shall see, this

is typical: for any point P in S2, the preimage set h−1(P ) is a circle in S3. We will

also refer to the preimage set h−1(P ) as the fiber of the Hopf map over P .

We devote the remainder of this article to study one aspect of the geometry of

the Hopf fibration, namely, the configuration of its fibers in S3. Using stereographic

projection (to be explained below) we get a particularly elegant decomposition of

3-space into a union of disjoint circles and a single straight line. Because this

arrangement is fun to think about, we cast it first in the form of a puzzle.

Linked Circles Puzzle (H). Using disjoint circles and a single straight

line, can you fill up 3-space in such a way that each pair of circles is linked,

and the line passes through the interior of each circle?

It is the linked-ness of the circles that makes this puzzle interesting. If the circles

are not required to be linked, there are easy solutions. For example, just take stacks

of concentric circles whose centers lie on the given line (see Figure 4). We will show

that the Hopf fibers themselves give rise to a solution to this puzzle, but see if you

can think of your own solution first!

We begin with an observation, presented in the form of an Investigation, on how

to find rotations that take a given point A to a given point B.
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Figure 4: One way to fill R
3 with disjoint circles and a line. Now try to arrange for every

pair of circles to be linked!

Investigation (I). Given two points A and B on S2, how can we describe

the set of all possible rotations that move A to B? First, choose an arc of

a great circle joining A to B and call this arc AB; note that this choice is

not unique. Convince yourself that if R is a rotation taking A to B, then

the axis of R must lie somewhere along the great circle bisecting AB (see

Figure 5).

Along this great circle there are two axes of rotation for which the angle of

rotation is easy to compute.

1. When the axis of rotation passes through the midpoint M of AB, the

angle of rotation θ is π radians or 180 degrees. Let us call this rotation

R1 (see the drawing on the left in Figure 6).

2. When the axis of rotation is perpendicular to the vectors v = ~OA and

w = ~OB, the angle of rotation is (plus or minus) the angle between v

and w and is given by cos(θ) = v · w. We will call this rotation R2

(see the drawing on the right in Figure 6).

C

BA

Figure 5: The axis of any rotation taking A to B must pass through the great circle C that

bisects AB.
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A
B A B

O O
M

rotation R1 rotation R2

R1

R2

Figure 6: Two rotations taking A to B.

If a point r in S3 is sent by the Hopf map to the point P in S2, then by (G) we

know that the rotation Rr moves the point (1, 0, 0) to P . We can use (I) to find the

axis and angle of rotation for two rotations that map (1, 0, 0) to P . Let us call R1

and R2 the rotations described in (I) parts 1 and 2, respectively.

Once we have axes and angles of rotation for R1 and R2, we can use (D) to find

the quaternions r1 and r2 that map to R1 and R2 under the map ϕ, i.e., R1 = Rr1

and R2 = Rr2
.

Investigation (J). What are explicit formulas for the quaternions r1 and

r2 described above? For the point P = (p1, p2, p3) on S2, verify that the

quaternions r1 and r2 are given by

r1 =
1

√

2(1 + p1)
((1 + p1)i+ p2j + p3k) ,

r2 =

√

1 + p1

2

(

1 +
−p3j

1 + p1
+

p2k

1 + p1

)

.

Let us write eit for cos t+i sin t. The fiber h−1(P ) is given as a parametrically

defined circle in R
4 by either of the following.

h−1(P ) = {r1eit}0≤t≤2π

h−1(P ) = {r2eit}0≤t≤2π

The point P = (−1, 0, 0) is a special case, and h−1((−1, 0, 0)) is given by

h−1((−1, 0, 0)) = {keit}0≤t≤2π.
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Seeing the Hopf fibration

Next we demonstrate a method that allows us to see a little of what is going on with

the Hopf fibration. Our aim is to show pictures of fibers. We do this by means of

stereographic projection.

We begin by describing the stereographic projection of the 2-sphere to the x, y-

plane (see Figure 7). Imagine a light source placed at the “north pole” (0, 0, 1).

Stereographic projection sends a point P on S2 to the intersection of the light ray

through P with the plane.

P

P ′

Figure 7: Stereographic projection.

The alert reader will notice that the point (0, 0, 1) has no sensible image under

this projection. Therefore we restrict the stereographic projection to S 2 \ (0, 0, 1).

Investigation (K). Verify that the stereographic projection described

above is given by

(x, y, z) 7→
(

x

1 − z
,

y

1 − z

)

.

Write out the inverse map R
2 → S2 \ (0, 0, 1). That is, given a point (a, b) in

the plane, what are the (x, y, z) coordinates of the point on S2 sent to (a, b)

by the stereographic projection? Show that a circle on S2 that contains

(0, 0, 1) is mapped to a straight line in the plane. Prove that a circle on

S2 that does not pass through the point of projection (0, 0, 1) is mapped

by the stereographic projection to a circle in the plane. (For a proof of the

circle preservation property using elementary geometry of complex numbers,

see [1] Ch. 1 § 2.4.)

Like the definition of the sphere, stereographic projection generalizes to all di-

mensions, and in particular, it provides a projection map S3 \ (1, 0, 0, 0) → R
3 given
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by

(w, x, y, z) 7→
(

x

1 − w
,

y

1 − w
,

z

1 − w

)

. (4)

Note that the point (1, 0, 0, 0) on S3 from which we project is an arbitrary choice.

The real power of stereographic projection is this: it allows us to see all of the

3-sphere (except one point) in familiar 3-space. This is remarkable because S 3 is a

curved object that resides in 4-space.

The last property in (K) above—that stereographic projection preserves circles—

holds in all dimensions (see [4], Chapter 18). We know from the previous section

that fibers of the Hopf map are circles in S3. It follows that stereographic projection

sends them to circles (or a line, if the fiber contains the point (1, 0, 0, 0)) in R
3. We

conclude with two Investigations that show how the stereographic images of the

Hopf fibers solve the linked circles puzzle (H).

Investigation (L). Let us denote by s the stereographic projection

S3 \ (1, 0, 0, 0) → R
3 given in (4). Then s ◦ h−1((1, 0, 0)) is the x-axis,

s ◦h−1((−1, 0, 0)) is the unit circle in the y, z-plane, and for any other point

P = (p1, p2, p3) on S2 not equal to (1, 0, 0) or (−1, 0, 0), s ◦ h−1(P ) is a cir-

cle in R
3 that intersects the y, z-plane in exactly two points A and B, one

inside and one outside the unit circle in the y, z-plane. This establishes that

s ◦ h−1(P ) is linked with the unit circle in the y, z-plane. The points A and

B lie on a line through the origin containing the vector (0, p3,−p2). The

plane of the circle s ◦ h−1(P ) cannot contain the x-axis (if it did, s ◦ h−1(P )

would intersect s ◦ h−1((1, 0, 0)), but fibers are disjoint). From these obser-

vations we can conclude that the x-axis passes through the interior of the

circle s ◦ h−1(P ). See Figure 8.
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generic

A

B

x

y

z

fiber
projected

unit circle in y, z-plane

Figure 8: A generic projected Hopf fiber. A and B mark the intersections of the fiber with

the y, z-plane.

Investigation (M). To show that any two projected fiber circles C and D

are linked, we exhibit a continuous one-to-one map ψ: R3 → R
3 that takes

C to the unit circle in the y, z-plane, and takes D to some other projected

fiber circle E. Since E is linked with the unit circle in the y, z-plane, C and

D must also be linked. See Figure 9. (Students who have never studied

topology may accept the intuitively reasonable statement that linked-ness

of circles cannot be altered by a continuous bijective map. Students with

experience in topology may enjoy trying to prove this.)

Here is how to construct the map ψ. Let P be any point on the circle

C, and let r = s−1(P ). Define f : R4 → R
4 by f(x) = kr−1x (quaternion

multiplication). The map ψ is the composition s ◦ f ◦ s−1.

C

D

C ′

D′

Figure 9: If the continuous bijective images C ′, D′ of circles C, D are linked, then C and

D must also be linked.

Conclusion

We have explained how the Hopf fibration can be understood in terms of quaternions.

In the process, we showed how the algebra of rotations in 3-space is built into the

workings of the Hopf map.

Topics raised in the Investigations suggest many lines of inquiry for independent

student research. For example, making computer animations of linked Hopf fibers
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R
3

S2

P
Q

h

s

s ◦ h−1(Q)
s ◦ h−1(P )

S3

h−1(P )
h−1(Q)

stereographic
projection

Hopf fibration

Figure 10: Stereographic projections of Hopf fibers. Any two projected fibers are linked

circles, except s ◦ h−1(1, 0, 0) is a line.

has been an independent study research project for two of our undergraduate stu-

dents. Figure 11 shows an image from the software written by Nick Hamblet (see

Acknowledgment below). The left panel shows a set of points lying on a circle in

the codomain S2 of the Hopf fibration. The right panel shows, via stereographic

projection, the fibers corresponding to those points. An ongoing project is to build

a web tutorial site featuring the animations. The reader who finds topics in this ar-

ticle appealing will enjoy a related article [17]. For general inspiration, and more on

the geometry of R
3 and rotations, see Hermann Weyl’s lovely book Symmetry [15].

Figure 11: Screenshot of Hopf fiber software.
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